

Journal of Organometallic Chemistry 527 (1997) 163-165

Synthesis of N,C-dilithio-2-allylpyrrole and its solvent-controlled reactions with electrophiles

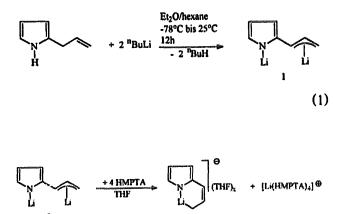
Bernd Wrackmeyer *, Iris Ordung, Bernd Schwarze

Laboratorium für Anorganische Chemie, Universität Bayreuth, D-95440 Bayreuth. Germany

Received 17 May 1996

Abstract

The N,C-dilithiated product 1 of 2-allylpyrrole was prepared and studied by ⁷Li NMR in THF/HMPTA. Compound 1 reacts selectively in THF with electrophiles (H₂O, MeI, Me₃SiCl) to give the Z-isomers 2a-4a. In disthylether, the analogous reactions lead selectively to the E-isomers 2b-4b.


Keywords: Pyrrole; 2-Substituted; N,C-dilithiation; ⁷Li NMR

1. Introduction

N.C-dilithiated compounds are attractive starting materials in organic and organometallic synthesis, as has been shown in the case of allylamines [1-4] or orthotoluidine derivatives [2,5]. Similarly, the dilithiated monobenzylamine o-LiC₆H₄CH₂N(Li)CH₂CH₂NMe₂ has been studied in detail [6,7]. N,C-dilithiated pyrroles have not been described so far. Known C,C-dilithiated compounds containing a pyrrole ring have been described from N-substituted pyrroles such as 1-phenylpyrrole [8] and 1-ethynylpyrrole [9]. Although the N-H function and the C=C double bond in 2-allylpyrrole are further apart than in allylamines, 2-allylpyrrole is certainly a promising candidate for N,C-dilithiation. Here we report on the synthesis of N,C-dilithio-2-allylpyrrole and some of its solvent-controlled selective transformations.

2. Results and discussion

2-Allylpyrrole reacts with two equivalents of "BuLi in hexane/ether to give the N.C-dilithio derivative 1 in high yield (Eq. (1)). The reaction proceeds stepwise, as expected, the N-H function being more reactive than the allyl group. Compound 1 is insoluble in hexane or ether but soluble in THF. If 4.5 equivalents of HMPTA are added to a THF solution of 1, a broad ⁷Li NMR signal is observed at room temperature, which changes below -80 °C to a quintet $[{}^{2}J({}^{31}P,{}^{7}Li) = 6.9$ Hz] and several broad ⁷Li signals (see Fig. 1). The appearance of the quintet at low temperatures indicates that a lithium cation has been removed from 1 and is now coordinated by four HMPTA molecules. The surroundings of the ⁷Li nucleus in this cation must be highly symmetrical, otherwise the scalar ${}^{31}P-O-{}^{7}Li$ coupling would not be resolved because of efficient quadrupolar relaxation of the ⁷Li nucleus. It is suggested that the broad ⁷Li resonance signals belong to various associated species of the anion shown in Eq. (2).

(2)

Corresponding author.

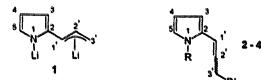
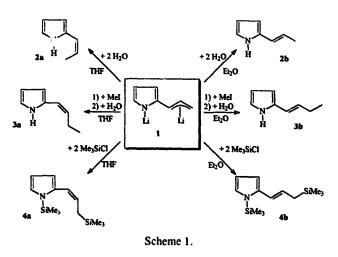


Fig. 1. 97.2 MHz ⁷Li NMR spectrum of 1 in THF at -80° C in the presence of 4.3 equiv. (Me₂N)₃PO (HMPTA).

The simplified structure of the anion in Eq. (2) indicates that reactions of electrophiles with 1 in donor solvents such as THF may afford selectively the products with cis-configuration at the C=C bond. In contrast, in nonpolar or weaker donor solvents, these reactions might lead to mixtures of products with cis- and trans-configuration, or only to the trans-products. The results of the reactions of 1 with H₂O, MeI and Me₃SiCl in THF or in diethylether are summarized in Scheme 1. In THF all products possess the *cis*-configuration at the C=C double bond, whereas in ether the trans-products are formed selectively. The respective stereochemistry is readily apparent from the ¹H and ¹³C NMR spectra (see Table 1), in particular from the vicinal coupling constants $^{3}J(^{1}H,^{1}H)$ across the C=C bond [10]. The compounds 2 [11] and 3 [12] were previously obtained as 1:1 mixtures of E/Z-isomers by other methods.


Table 1

NMR data for the pyrrole derivatives 1-4

The second s		1	2a (Z)	2 b (E)	3a (Z)	3b (E)	4a (Z)	4b (E)
I-R			Н	Н	CH,	CH,	SiMe	SiMe ₁
'_R'			Н	н	H	Н	SiMe	SiMe,
⁷ Li		0.9 *					onney	Ourse ?
8 ⁷ Li 8 ²⁹ Si 8 ¹³ C [J(²⁹ Si, ¹³ C)]	N-Si		W120	-	2012-152	V ECHER.	11.2	11.1
	3'-Si	2010/12	annair.	10101002	0. U(3r)	10010072	1.9	1.6
	C-2	132.8	129.9	130.7	129.6	130.5	134.4	137.7
[J(⁴ *Si, ¹³ C)]	C-3	98.7	108.6	106.2	108.2	106.1	109.6	107.6
	C-4	106,4	109.2	109.0	109.0	108.7	111.3	110.4
	C-5	123.2	117.2	117.7	117.4	117.8	122.7	
	C-1'	76.3	120.1	121.5	118.2	119.2		123.2
	C-2'	146.8	121.8	121.5	129.8		118.3	120.1
	C-3'	45.3	14.5			127.3	125.9	125.9
	N-R		14.2	18.1	22.3	25.6	19.6 [46.8]	23.9 [47.5]
	3'-R'	01000	Citory,	Viliana	-	-	0.2 [58.0]	0.7 [58.1]
	3°K	enicores			13.7	13.5	- 2.0 [51.0]	- 1.9 [51.9]

^a At room temperature.

The *cis*-selectivity observed for reactions of 1 with electrophiles in THF is promising for the use of 1 as a versatile synthon in heterocyclic synthesis. The ease of N,C-dilithiation of 2-allylpyrrole suggests that N,C,C-trilithiation of 2,5-diallylpyrrole will also be feasible.

3. Experimental

All preparative work and handling of samples, except the organic products 2a/b and 3a/b, was carried out under an atmosphere of dry N₂, using oven-dried g'assware and dry solvents. Starting materials were commercial products or were prepared according to literature procedures (2-allylpyrrole [13]). NMR spectra were recorded using Jeol EX270 and Bruker ARX 250 spectrometers equipped with multinuclear units. Chemical shifts are given with respect to Me₄Si [δ^1 H(CHCl₃/ CDCl₃) = 7.24, (THF) = 1.85; δ^{13} C(CDCl₃) = 77, (THF) = 26.5; LiCl (1 M in D₂O) (δ^7 Li with $\Xi(^7$ Li) = 38.86377 MHz)].

3.1. N,C-dilithio-2-allylpyrrole 1

A solution of "BuLi (187 mmol) in 120 ml of hexane and 100 ml of diethylether was added dropwise to a stirred solution of 10g (93.4 mmol) of 2-allylpyrrole in 200 ml of ether at -78 °C. The mixture was stirred for 12 h and warmed to room temperature. After that the bright yellow reaction mixture was filtered, the yellow precipitate was washed with pentane, and 9.4g (85%) of 1 were obtained as a yellow powder. ¹H NMR (THF; 250 MHz) δ^1 H = 6.68 m, C⁵-H; 6.17 m, C⁴-H; 5.84 m, C³-H; 4.54 d [9.5 Hz, ³J] C^{1'}-H; 6.32 m, C^{2'}-H; 2.55 d [11.0 Hz, ³J] (2H) C^{3'}.

3.2. Adduct of 1 with HMPTA

HMPTA (1.35 g; 7.5 mmol) was added to a solution of 0.2 g (1.7 mmol) 1 in 5 ml of THF at -78 °C. The colour changed from orange to dark red. The solution of the adduct must be stored at low temperatures (-78 °C), otherwise slow decomposition takes place.

3.3. Reactions of 1 with electrophiles

3.3.1. In THF

8.4 mmol of H_2O , or Me_3SiCl , or 4.2 mmol of MeI (followed by 4.2 mmol of H_2O) respectively were added in one portion to a stirred solution of 0.5 g (4.2 mmol) of 1 in 20 ml of THF at -78 °C. The orange solution became colourless. After warming to room temperature the solvent was removed and the residue extracted with hexane.

2a. Removal of the hexane and sublimation gave 0.33 g (73%) of **2a** as colourless platelets (m.p. 57 °C). ¹H NMR (CDCl₃; 250 MHz) δ^{1} H = 8.09 [br], NH; 6.81 m, C⁵-H; 6.43 m, C³-H/C⁴-H; 6.28 d [11.6Hz, ³J] C¹-H; 5.72 m, C^{2'}-H; 2.06 d [7.3 Hz, ³J] C^{3'}-H.

3a. Removal of the hexane and distillation gave 0.40 g (78%) of **3a** as a colourless liquid (b.p. 43 °C/1 Torr). ¹H NMR (CDCl₃; 250 MHz) δ^{1} H = 8.00 [br], NH; 6.91 m, C⁵-H; 6.65 m, C³-H; 6.61 t, C⁴-H; 6.38 d [11.6 Hz, ³J] C¹-H; 5.78 m, C^{2'}-H; 2.71 m, C^{3'}-H; 1.45 t, CH₃.

4a. Removal of the hexane and distillation gave 0.70 g (73%) of 4a as a colourless liquid (b.p. $92 \degree C/0.1 \text{ Torr}$). ¹H NMR (CDCl₃; 250 MHz) $\delta^{1}\text{H} =$ $6.97 \text{ m}, \text{ C}^{5}$ -H; 6.63 m, C³-H; 6.51 m, C⁴-H; 6.60 d [11.2 Hz, ³J] C¹-H; 5.87 m, C^{2'}-H; 2.15 d, C^{3'}-H; 0.70 s, N-SiCH₃; 0.33 s, 3'-SiCH₃.

3.3.2. In diethylether

8.4 mmol of H_2O or Me_3SiCl were added to a stirred suspension of 0.5 g (4.2 mmol) of 1 in 20 ml of ether at 0°C. In the case of the reaction with 4.2 mmol MeI the mixture was stirred at room temperature for 1 h, and then 4.2 mmol of H_2O were added. After the colour of the dispersion changed to white, the mixture was filtered.

2b. Removal of the solvent from the filtrate and sublimation gave 0.29 g (65%) of **2b** as a colourless powder (m.p. 35 °C). ¹H NMR (CDCl₃; 250 MHz) δ^{1} H = 8.01 [br], NH; 6.82 m, C⁵-H; 6.51 t, C⁴-H; 6.48 m, C³-H; 6.47 d [15.9 Hz, ³J] C^{1'}-H; 5.03 m, C^{2'}-H; 2.16 d, C^{3'}-H.

3b. Removal of the solvent from the filtrate and distillation gave 0.4 g (65%) of **3b** as a colourless liquid (b.p. 43 °C/1 Torr). ¹H NMR (CDCl₃; 250 MHz) δ^{1} H = 8.04 [br], NH; 6.84 m, C⁵-H; 6.53 m, C³-H; 6.50 m, C⁴-H; 6.48 d [16.2 Hz, ³J] C¹-H; 6.07 m, C²-H; 2.52 m, C³-H; 1.43 t, CH₃.

4b. Removal of the solvent from the *n*-rate and distillation gave 0.57 g (60%) of **4b** as a cotourless liquid (b.p. 90 °C/0.1 Torr). ¹H NMR (CDCl₃; 250 MHz) δ^{1} H = 6.81 m, C⁵-H; 6.49 m, C³-H; 6.33 t, C⁴-H; 6.37 d [15.5 Hz, ³J] C^{1'}-H; 6.16 m, C^{2'}-H; 1.75 d, C^{3'}-H; 0.59 s, N-SiCH₃; 0.17 s, 3'-SiCH₃.

Acknowledgements

Support of this work by the Fonds der Chemischen Industrie and Volkswagen-Stiftung is gratefully acknowledged.

References

- [1] D. Hänssgen and E. Odenhausen, Chem. Ber., 112 (1979) 2389.
- [2] S.A. Burns, R.J.P. Corriu, V. Huynh and J.J.E. Moreau, J. Organomet. Chem., 333 (1987) 281.
- [3] J. Schulze and G. Schmid, J. Organomet. Chem., 193 (1980) 83.
- [4] J. Schulze, R. Boese and G. Schmidt, Chem. Ber., 114 (1981) 1297.
- [5] B. Wrackmeyer and H. Zhou, J. Organomet. Chem., 375 (1989)
 1.
- [6] D. Barr, R. Snaith, D.S. Wright, R.E. Mulvey, K. Jeffrey and D. Reed, J. Organomet. Chem., 325 (1987) C1.
- [7] C. Barr, W. Clegg, S.M. Hodgson, R.E. Mulvey, D. Reed, R. Snaith and D.S. Wright, J. Chem. Soc., Chem. Commun., (1988) 367.
- [8] G.W.H. Cheeseman and S.G. Greenberg, J. Organomet. Chem., 166 (1979) 139.
- [9] A.G. Mal'kina, R. den Besten, A.C.H.T.M. van der Kerk, L. Brandsma and B.A. Trofimov, J. Organomet. Chem., 493 (1995) 271.
- [10] H. Günther, NMR-Spektroskopie, Thieme, Stuttgart, 1992, pp. 108-115.
- [11] W. Herz and C.F. Courtney, J. Am. Chem. Soc., 76 (1954) 576.
- [12] M. Tashiro, Y. Kiryu and O. Tsuge, Bull. Chem. Soc. Jpn., 48 (1975) 616.
- [13] E.P. Papadopoulos and C.A. Van der Werf, Heterocycles, 19 (1982) 343.